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ABSTRACT
By storing carbon (C), soil provide natural solutions to climate change. However, implement-
ing C sequestration practices on a large scale is complex because sequestration rates vary
with climatic conditions, soil types and agricultural management. Researchers face chal-
lenges identifying effective C sequestration practices in arid and semi-arid regions because
precipitation limits plant biomass production. We discuss the “more carbon per drop”
approach to enhance C sequestration in a water-limited environment. This approach empha-
sizes increasing soil organic carbon (SOC) sequestration and reducing greenhouse gas emis-
sions by enhancing water use efficiency and soil water storage. Agricultural strategies that
increase the amount and diversity of C inputs, improve nutrient availability for crops, and
minimize soil disturbance can simultaneously sequester soil C and enhance soil water stor-
age. Strategies for enhancing SOC sequestration while increasing soil water storage could
benefit farmers in arid and semi-arid regions because they can maintain a net-zero or net-
negative C footprint. Therefore, implementing policies that promote SOC sequestration and
soil water storage could provide natural climate solutions to the vast areas of the world fac-
ing water limitations.

KEY POLICY HIGHLIGHTS

�SOC sequestration in a water-limited environment is challenging; more carbon per drop
simultaneously increases SOC and soil water storage

�The social, economic, and cultural challenges of changing management practices for C
sequestration could be addressed through a diverse set of incentives

� Incentivizing conventional SOC sequestration practices while investing in research and
development of new frontier technologies could provide a win–win solution

KEYWORDS
dry regions; carbon
sequestration; climate
change; water use efficiency

Introduction

Greater attention has been given to enhanced soil

carbon (C) storage since the launch of the 4p1000

initiative at COP21 by the UNFCCC under the

framework of the Paris Climate Agreement for lim-

iting global warming below the 2 �C threshold [1].

Achieving the goal of the Paris Climate Agreement

requires the large-scale implementation of soil

organic carbon (SOC) sequestration and green-

house gas (GHG) mitigation practices across crops

and land uses [2, 3]. It is estimated that enhancing

SOC sequestration by adopting improved agricul-

tural and land management practices alone can

remove 0.79 to 1.54 Gt C year�1 from the atmos-

phere [4]. However, there is no consensus on

negative emissions technologies and their poten-
tial to mitigate the current net global increase in
anthropogenic CO2 emissions of 4.9 Gt C year�1

[5]. Specifically, SOC sequestration is largely
unknown in the arid and semi-arid agroecosystems
that cover more than 40% of the land area in the
world. Effective C sequestration in water-limited
environments is challenging because biomass pro-
duction in these areas is constrained by high tem-
perature, low moisture, and coarse-textured sandy
soils [6].

Increased SOC sequestration on agricultural
lands could enhance crop productivity while pro-
viding other agroecosystem benefits through their
positive effects on soil water storage, nutrient
cycling and erosion control [7, 8]. Adoption of SOC
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sequestration practices also mitigates GHG emis-
sions. Therefore, estimates of climate mitigation
potential through C sequestration in agricultural
soils remain incomplete without considering a
detailed inventory of the GHG footprint of the
complete production cycle, including field machin-
ery use, farm input production and transport, emis-
sions from the field, and during post-processing of
agricultural products. Nitrous oxide (N2O) and
methane (CH4) have 310 and 34 times higher glo-
bal warming potential, respectively, than CO2 on a
100-year time scale [3]. Therefore, minimizing N2O
and CH4 emissions through improved soil manage-
ment could substantially reduce global warming
and climate change. Accounting for all sources
and sinks of C and GHG emissions while monitor-
ing water needed for each step will help develop
SOC sequestration technologies for water-limited
environments.

The term “water-limited environments” is used
to describe arid and semi-arid regions with
<500mm annual precipitation where the ratio of
total annual precipitation to potential evapotrans-
piration is <1 [6]. Working lands in water-limited
environments cover >32% of the Earth’s surface
and 44% of the cultivated area globally and sup-
port food production for 20.2% of the global
population [9]. Water-limited regions stretch across
vast areas of the western United States and
Mexico, western South America, southwestern and
central Asia, northwestern India and Pakistan,
Western Australia, and northern and southwestern
Africa [6, 10]. Despite well-documented evidence

of SOC sequestration through alternative agricul-
tural strategies such as cover cropping, crop rota-
tion and perennial cropping, using soil
amendments, improved fertility management, and
reduced- and no-tillage management in humid
and sub-humid regions [11–13], the potential of
arid and semi-arid areas to enhance SOC has not
been studied extensively. Integrated modeling of
observations, based on 150,000 soil profile descrip-
tions and satellite-based parameters around the
world, showed that soils in arid and semi-arid
regions had lower SOC (<50 Mg ha-1) than their
storage potential (Figure 1). Innovation in agricul-
tural technologies that increase SOC sequestration,
mitigate GHG emissions, and increase soil water
storage can provide a win–win solution to feed
the growing population and mitigate cli-
mate change.

This paper provides an overview of cropland
SOC sequestration practices in water-limited envi-
ronments. In these environments, opportunities for
SOC sequestration are limited by (a) a low biomass
production and C input due to soil water limita-
tion; (b) the absence of quantifiable, verifiable and
monetizable benefits to sequestering SOC; (c) a
lack of economic incentives to drive the changes
in agriculture; and (d) scarcity of water necessary
to enhance and realize benefits from adopting
SOC sequestration practices. This paper discusses
agricultural strategies to enhance SOC sequestra-
tion while improving soil water storage and prod-
uctivity. A meaningful increase in SOC
sequestration at the farm or regional scale must

Figure 1. Global soil organic carbon stock predicted for 0–1m depth (Mg ha-1) at 250m resolution derived from soil
organic carbon content, bulk density, and coarse fragments. Map retrieved from https://wad.jrc.ec.europa.eu/
organiccarbon.
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occur without simultaneous SOC reductions at
other locations or increasing GHG emissions from
the entire production system. Therefore, the sys-
tems approach, which accounts for SOC sequestra-
tion and GHG footprints of each farming
component and their water use will provide clues
on how to implement carbon managment strat-
egies in water limited regions and establish opti-
mum incentives for broader adoption of these
practices .

Conceptualizing more carbon per drop

The phrase more carbon per drop is coined to
describe agricultural strategies that increase SOC
sequestration and mitigate GHG emissions per unit
of water used for crop production. Since precipita-
tion is the primary limiting factor for plant growth
and production in arid and semi-arid drylands, soils
are often low in fertility, and native vegetation is
sparse. Rainfed agriculture in these areas produces
low yield, contributing to low biomass input for
the microbial transformation of biomass into stable
C compounds. The SOC stocks in the top 30 cm of
soil are generally less than 50Mg ha�1 in water-
limited agroecosystems [14]. Studies show that
low SOC storage is often associated with a low soil
water storage capacity [15–17]. High variability in
climate, extended drought, and sparse but intense
rainfall further increases uncertainty in SOC
sequestration and stabilization in water-limited
environments, affecting associated ecosystem serv-
ices. However, adopting water conservation tech-
nologies in arid and semi-arid regions could
increase soil carbon sequestration. Our approach,
more carbon per drop, emphasizes identifying and
promoting technologies that increase SOC and
simultaneously improve soil water storage to
develop climate-smart and resilient cropping sys-
tems in arid and semi-arid regions. This approach
emphasizes improving water use efficiency so that
more biomass C is recycled and ultimately stored
in the soil. Summing above- and belowground
plant biomass and soil organic matter, the C stock
could be more than 200Mg ha�1 in the vast area
of arid and semi-arid regions, specifically in tem-
perate agroecosystems [6]. Improving C storage
through improved water use and conservation
could further enhance the sequestration potential,
thereby enhancing agricultural resilience in arid
and semi-arid regions.

Land degradation is persistent in water-limited
environments, resulting in more SOC loss through

GHG emissions and soil erosion. Currently, 33% of
the global soils have been degraded [9], including
25–35% of land area in arid and semi-arid regions
[18]. Wind erosion, the main driving force of soil
loss in arid and semi-arid areas, is the primary soil
degradation process that results in a large amount
of SOC loss from the soil surface [10]. These areas
have lost much of their SOC due to agriculture or
related land uses, decreased soil structural stability,
increased erosion risks, and reduced water supply
and nutrient availability [19]. Land degradation
reduced SOC stocks by 33–90% in Chinese grass-
lands [20, 21]. However, the process of land deg-
radation affecting SOC stocks is reversible.
Implementing the more carbon per drop approach
can revitalize the degraded land by restoring SOC
because of the multiple ecosystem services associ-
ated with increasing SOC storage [7, 22].
Successful implementation of such strategies in
water-limited environments could improve soil,
water and environmental quality (Figure 2). The
sustainable SOC sequestration technologies also
improve soil chemical, biological, and physical
properties, including soil pH, electrical conductiv-
ity, cation exchange capacity, nutrient mineraliza-
tion, soil bulk density, soil structure and water-
holding capacity [22–25]. Improved soil physical,
chemical and biological properties enhance soil
functions, including soil water retention and
increased water availability to produce more bio-
mass for sustainable C sequestration, making SOC
a critical component of soil health and water
conservation.

Water infiltration and availability is one of the
most critical ecosystem functions associated with
increasing SOC in arid and semi-arid regions.
Although there is enormous variability in responses
of different soils to sequester C and improve water
storage, studies show a positive relationship
between SOC sequestration and available water cap-
acity (e.g. [22]). A study reported an increase in avail-
able water capacity with increased SOC content for
sand (r2 ¼ 0.79), silt loam (r2 ¼ 0.58), and silty clay
loam (r2 ¼ 0.7) soils [24]. Increasing SOC increased
soil aggregation and aggregate stability, improving
porosity and soil water retention [22]. Increased
macro and mesopores also increase soil water infil-
tration and decrease runoff. A recent global metanal-
ysis of the SOC–crop yield relationship showed that
yield increases levelled off at approximately 2% SOC
[26]. In arid and semi-arid agroecosystems, which
often have <1% SOC because of low precipitation
[27], increasing SOC up to 2% is an arduous task.
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However, increasing SOC sequestration while
improving soil water storage functions could sub-
stantially improve food and nutritional security.

Improved farming practices such as cropping
system intensification and diversification, cover

cropping, crop rotation, mixed- or intercropping of
deep- and shallow-rooted crops, efficient nutrient
management practices using organic and inor-
ganic fertilizer sources, conservation tillage and
improved grazing management in rangelands can

Figure 3. Management strategies for increasing soil organic carbon sequestration can also increase soil water storage and
crop water productivity in water-limited environments.

Figure 2. Multiple ecosystem services related to increased soil organic carbon storage.
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sequester 4.4 to 6.9 Pg CO2e year�1 [28]. Adopting
frontier technologies such as breeding for crop
varieties with deeper, larger and more recalcitrant
root systems could add 3 Pg CO2e year�1 in soils
or through the root tissues themselves [29–31]. In
addition, cultivating biomass crops and combus-
tion in power plants outfitted with C capture and
storage technology will allow permanent storage
of C in the ground. Adopting multiple practices
together could have greater effects on SOC
sequestration (Figure 3). The water storage poten-
tial of these management alternatives has not
been explored under different soil and climatic
conditions. Identifying best management practices
and implementing them on a regional scale can
provide natural climate solutions for dry areas.

Effects of alternative SOC sequestration practi-
ces are often complementary [10]. For example,
reducing tillage and increasing cropping intensity
and diversity increases SOC sequestration.
Reduced soil disturbance under reduced- and no-
tillage protects soil C from microbial breakdown.
Increasing cropping intensity and diversity, on the
other hand, increases C sources and diversity.
Improved nutrient management, such as using the
4R nutrient stewardship (right source, rate, time
and place), can increase nutrient use efficiency,
leading to greater crop production and C storage.
However, increasing nutrient application rates do
not linearly affect SOC sequestration because
under- or over-application of nutrients can nega-
tively affect crop yields, biomass C inputs and net
GHG emissions (Figure 4). A recent study by
Sevenster et al. [32] demonstrated that declining
SOC contributed less than 3% of the total GHG
emissions while fertilizer use accounted for 37%,
lime use 12%, and the combined burning and
decomposition of residue 20% in Australian rainfed

grain cropping systems in 2005. However,
increased use of these inputs in grain production
between 2005 and 2015 did not meaningfully
change SOC but did increase total GHG emissions
from this sector. SOC sequestration strategies, such
as planting perennial crops, selecting water-effi-
cient crops and varieties, breeding crops for
deeper and denser root systems, and restoring
degraded marginal lands by planting bioenergy
crops, could increase C inputs per unit of water in
dry regions [23].

Irrigation availability in arid and semi-arid crop-
lands is another factor that contributes consider-
ably to SOC storage. The availability of irrigation
water has made the Great Plains region of the USA
one of the most productive agroecosystems glo-
bally. The Ogallala Aquifer, among the largest
aquifers in the world, is the primary source of
groundwater in the Great Plains region. However,
crop production potential has not been fully har-
nessed in recent years due to declining irrigation
capacity. A study projected that an area of
22,000 km2 (24% of currently irrigated lands) in the
Ogallala Aquifer region of the USA may be unable
to support irrigated agriculture by 2100, and 13%
of this area may not be even suitable for dryland
crop production due to soil degradation [33]. With
this transition, a significant amount of soil and
vegetation C will be lost to the atmosphere. A
recent study demonstrated that a change from irri-
gated to dryland production could decrease SOC
storage in 0–30 cm soil profile by 14% in 14 years
[34], equivalent to an annual flux of additional 1.2
million metric tons of CO2 year�1 from the
Ogalalla Aquifer region alone. Implementing more
efficient water application technologies, including
sub-surface drip systems or low-energy precision
applications, could increase crop production and
SOC storage. Therefore, development of frontier
technologies that increase SOC sequestration and
improve water use efficiency while reducing the
GHG footprint of agricultural systems is urgently
needed. Using green water for biomass production
and implementing bio-based C capture technolo-
gies could further enhance SOC sequestration and
mitigate global warming. Pre-season irrigation or
dormant season irrigation to refill the soil profile
and encourage crops to root deeper to use that
water has shown to increase irrigation efficiency
[35]. Deep-rooted crops extract water and
nutrients from the deeper soil profile, contributing
to greater biological activity and more SOC accrual
in the soil [36]. Integrating proven technologies

Figure 4. A schematic diagram showing soil organic car-
bon response to tillage, cropping, and nutrient manage-
ment strategies (figure not to scale).
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and emerging approaches in water management
and SOC sequestration helps achieve more carbon
per drop in water-limited environments.

Implementing more carbon per drop in
water-limited environments

Maximizing carbon inputs

Increasing C inputs is the first step to improve SOC
sequestration in agroecosystems. Maintaining resi-
due cover benefits soil by increasing C inputs, min-
imizing soil erosion by wind and water,
maintaining a low soil temperature in hot, dry
environments, and conserving moisture. Positive
effects of crop residues on SOC sequestration and
soil water storage are often reported in systems
where no-tillage is combined with surface residue
cover [37]. However, the crop residues required to
enhance SOC sequestration vary with soil type, cli-
matic conditions and management practices.
Machado [38] predicated the need for 5.2–7.8Mg
ha�1 year�1 crop residue to maintain SOC in dry-
land cropping systems of eastern Oregon, USA. In
hot, dry conditions of the southern Great Plains,
>5Mg ha�1 cover crop residue addition is
required to sustain SOC [39]. Neither study
reported soil water storage potential and crop
water productivity in these cropping systems. A
global meta-analysis of 176 studies suggested
returning crop residues after crop harvest
increased SOC by 12.8% [40]. Since increasing SOC
sequestration is directly related to improving soil
moisture storage capacity, increasing residue input
through better crop management could improve C
cycling and water storage in dry regions. However,
meta-data on crop residue management and soil
water storage is not available. Identifying the crop
residue effects and amount of residue needed to
harness soil C sequestration and water storage
benefits can increase agricultural resilience and
mitigate climate change in water-limited
agroecosystems.

Improved nutrient management is another
approach to increase SOC sequestration and miti-
gate greenhouse gas emissions. Increased nutrient
supply supports better crop production and bio-
mass recycling, ultimately increasing SOC storage.
Studies show higher SOC with integrated nutrient
management practices through organic and inor-
ganic sources [41]. Increasing SOC sequestration
often requires a high rate of nutrient addition to
replace nutrients removed during crop harvest
[12]. Nutrients primarily needed for SOC

sequestration in soils include N, P, S and micronu-
trients, as constituents of various C compounds
[42, 43]. About 80 kg N, 20 kg P, and 14 kg S is
required to form 1Mg humus-C [42]. The SOC
sequestration in a water-limited environment is
typically constrained not by nutrient availability
but rather by the balance of nutrients to sustain
crop production and biomass C inputs [44]. The
nutrients not utilized by crops due to moisture
limitation are either accumulated in soil or lost to
the environment (Figure 4). For example, over-
application of nutrients in Australian drylands led
to greater GHG emissions without any significant
impacts on SOC sequestration [32]. Therefore,
nutrient management strategies should be devel-
oped in such a way that the benefits of C seques-
tration are not negated by their environmental
footprints, including GHG emissions and loss
through leaching. The SOC sequestration in
degraded soils requires large amounts of mineral
fertilizers to support biomass production sufficient
to maintain soil fertility. As fertilizer production
leads to GHG emissions, maximizing C sequestra-
tion in degraded lands by maximizing nutrient
inputs may not always be a climate-smart strategy.
Any fertilizer applied should be synchronized to
plant uptake to minimize adverse environmental
impacts through GHG emissions or nutrient loss
through wind and water erosion. Site-specific
nutrient management strategies showed promise
in increasing crop production while reducing GHG
emissions from arid and semi-arid cropping sys-
tems [45]. More research on site-specific nutrient
management effects on soil water dynamics may
benefit agroecosystems by improving SOC seques-
tration and soil water retention.

Minimizing soil disturbance

More carbon per drop will be fully harnessed with
extensive research on the co-benefits of conserva-
tion tillage for SOC sequestration and soil water
storage. Conventional agriculture uses tillage to (1)
prepare a smooth seedbed, (2) make soil loose
which favors rooting of crops, (3) incorporate fertil-
izers and crop residue, (4) control weeds and dis-
eases, and (5) make the soil warm in cooler
regions. Conventional tillage typically involves
moldboard plowing, disking and harrowing. Crop
residues are incorporated into soils during conven-
tional tillage, leaving less than 15% of crop residue
on the soil surface [46]. Studies suggested deple-
tion in SOC occurs with continuous tillage in arid
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and semi-arid soils [47–49]. Tillage plays a signifi-
cant role in crop residue placement and decom-
position in soil [11, 50], which ultimately influences
the water storage characteristics of soils. Therefore,
there has been increasing attention to alternative
tillage management practices to improve soil
health, SOC sequestration and crop production
while minimizing water and nutrient loss, soil ero-
sion and other adverse environmental effects.

Conservation tillage practices include no-tillage,
strip tillage, reduced tillage, mulch tillage, etc., which
leave more than 30% of the soil surface covered
with crop residues [46]. Studies demonstrate
increased soil water storage (e.g. [51]) and available
water content (e.g. [52]) with conservation tillage sys-
tems in water-limited conditions. The latter study
also reported an increase in SOC with conservation
tillage, and the effect was limited to surface (top
30 cm) soil. Conservation tillage systems often accu-
mulate high SOC near soil surfaces because reduced
soil disturbance slows down the rate of crop residue
decomposition [47]. Reducing soil disturbance also
builds a suitable environment for soil microorgan-
isms, improves aeration, promotes soil aggregation
and structure, and serves as a nutrient bank for plant
growth. Soils with reduced disturbance are also high
in available substrates, wetter and cooler, and fluctu-
ate less in moisture and temperature, supporting
SOC accumulation [53, 54]. An increase in soil water
storage and SOC sequestration in surface soil with
conservation tillage systems has been reported from

arid and semi-arid regions across the world, includ-
ing the Great Plains and Pacific Northwest of the
USA [16, 47, 55], western India [17] and most of
Australia [37]. For example, a long-term conservatio-
nagriculture study in Pusa, India, showed no-tillage
relative to conventional tillage increased economic
water use efficiency by 42% and SOC sequestration
by 3.5–31.8% [17]. Decreasing tillage operations
reduced evaporation losses and thereby increased
soil water storage because of improved water reten-
tion in the semi-arid US Great Plains [15]. A global
meta-analysis revealed that conservation tillage
increased SOC by 3.15±2.42Mg ha�1 (mean ± 95%
confidence interval) in the surface 10 cm of soil but
did not enhance SOC stock in the 0–40 cm profile
[56]. Further research is needed on the effects of
reduced or no soil disturbance on soil water conser-
vation and SOC accumulation simultaneously.

Increasing cropping intensity and diversity

Increasing cropping intensity and diversity is crit-
ical for maximizing plant biomass production and
diversifying microbial substrates. Continuous crop-
ping or increased cropping intensity could put
more organic matter into the soil, where soil
microbes decompose it, and part of organic matter
could be sequestered in the soil (Figure 5). Certain
plants work with symbiotic microbes to fix nitrogen,
which is added to the soil upon the decomposition
of such plants, ultimately supporting crop

Figure 5. Soil organic carbon and nutrient cycling in the agroecosystem are regulated by crop species, diversity, and soil
management practices. Both C and N generated by plant activities may be sequestered in the soil profile or lost to the
environment by leaching or surface runoff (Image concept: Rajan Ghimire; graphic work by Evan Evans of NMSU
Innovative Media and Communications).
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production and soil C accumulation. Increasing
cropping intensity through cover cropping, crop
rotation, inter-cropping, mixed cropping and peren-
nial cropping increases SOC and improves nutrient
cycling and soil water storage [54, 57, 58]. It can
also alleviate N loss, reduce wind and water erosion,
and improve soil aggregation [54, 59, 60].
Continuous ground cover from various crops in
rotation moderates soil temperature to mild winter
and summer conditions and maintains a constant
supply of microbial substrates needed for increasing
SOC sequestration [53, 61]. A recent global meta-
analysis revealed that intensification and diversifica-
tion of cropping systems through cover cropping
increased C sequestration by 0.56Mg ha�1year�1

[57]. Using diverse crops in rotation or as cover
crops improves the quantity and quality of crop
residue returned to the soil, ultimately increasing
the persistence of C stored in the soil [62–64].

Increasing cropping intensity in water-limited
environments is challenging because it could
deplete the soil moisture needed for effective C
sequestration. Although the effects of cropping
intensification on SOC sequestration in water-lim-
ited environments vary with soil type, tillage prac-
tices and fertility management [65–67], the net
effect is positive (Table 1). However, increased
cropping intensity often results in increased water
demand and water use efficiency. In Colorado,
USA, a study suggested a decrease in soil moisture
and subsequent crop yield with cover cropping
compared to crop rotations without cover crops
[72]. Studies in eastern New Mexico, USA, with
supplemental irrigation demonstrated no differ-
ence in soil water storage, crop yield and water
productivity of cropping systems with and without
cover cropping [73]. In another study, under the
irrigated condition, crop yield and water productiv-
ity were significantly greater with cover cropping
than without cover crops [74].

SOC accumulation due to cover cropping or
cropping system intensification is often realized
when combined with no-tillage or reduced tillage

management because reduced or no-tillage often
increases soil water storage [16, 54]. Ecological
intensification of cropping systems in Brazil
resulted in both SOC sequestration and increased
soil water storage [25]. Their study also demon-
strated high soil cover, low soil water and nutrient
losses, and increased grain yield with the adoption
of no-tillage and more intensive cropping.
Implementing more than one soil and water man-
agement strategy could help achieve more carbon
per drop in arid and semi-arid regions in a
few years.

Frontier carbon management practices

With growing interest in soil-based C sequestration
practices as a natural climate solution, researchers
have focused on developing innovative manage-
ment practices with the potential to increase SOC
sequestration considerably without increasing GHG
emissions. Paustian et al. [23] suggested biochar
applications , developing and growing perennial
grain crops, and planting annual crops bred to
produce deeper and more extensive root systems
as frontier practices for increasing SOC . Biochar, a
charcoal-like product of thermal degradation of
biomass in the limited presence or absence of oxy-
gen, can increase SOC sequestration, improve soil
structure, increase nutrient cycling and sustain
crop productivity [75]. In recent years, converting
crop residues, manure, compost and other agricul-
tural wastes into biochar and reusing them as a
soil amendment has been increasingly practiced
for SOC sequestration and stabilization [76, 77].
The biochemically recalcitrant and predominantly
aromatic C present in pyrolyzed material can per-
manently increase SOC [78]. Biochar additions can
also interact with the native SOC and either stimu-
late or reduce the rate of decomposition of the
native SOC, depending on soil moisture, nutrients
and pH content [23]. In water-limited environ-
ments, biochar has greater potential to increase
SOC because of the slow decomposition of biochar

Table 1. Cover crops for cropping system intensification and soil organic carbon sequestration in arid and semi-
arid regions.

Study location Soil type
Study

duration
Soil

depth (cm) Tillage Crop rotation Fallow Cover crops
Sequestration rate
(kg ha�1 year�1) Ref.

Garden city, KS Ulysses
silt loam

5 0–7.5 NT Winter wheat–fallow 9.9 11.2 260 [68]

Clovis, NM Olton
clay loam

5 0–15 NT Winter wheat–
sorghum–fallow

18.2 18.5 51 [64]

Woodslee, Canada Clay loam 17 0–15 CT Monoculture
winter wheat

46.8 52.7 344 [69]

Shaanxi, China Silt loam 5 0–20 CT Summer
fallow–winter wheat

18.9 20.4 300 [70]

Victoria, Australia Vertosol 12 0–30 NT Fallow–wheat–chickpea 23.0 25.4 202 [71]
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C under water-limited conditions. The most signifi-
cant contribution of biochar as a negative emis-
sions technology is due to its N2O reduction
potential. A recent meta-analysis reported biochar
application could reduce N2O emissions by 9–12%
[79]. An earlier global assessment suggested an
almost 50% reduction in N2O emissions compared
to non-biochar-amended soils [80].

Perennial cropping increases SOC sequestration
by minimizing disturbance and increasing root and
aboveground biomass inputs. Perennial crops have
deeper and denser root systems than annual row
crops, producing 3–10 times more belowground
biomass [81]. In addition, the roots of perennial
crops typically have a higher C:N ratio than their
annual counterparts [82], reducing decomposition
rates. Studies also show that root-derived C is
retained longer and forms more stable soil aggre-
gates than shoot-derived C [83]. In water-limited
environments, the roots of perennial crops extend
to a greater soil depth, resulting in greater total
root biomass production [84]. A study from south-
ern Alberta, Canada, reported 14.9% and 11%
greater SOC under perennial wheatgrass
(Agropyron trichophorum L.) than under fallow–-
wheat and wheat–wheat rotations, respectively, at
0–7.5 cm depth [85]. Breeding perennial crops suit-
able for arid and semi-arid regions could enhance
SOC sequestration in these regions. Researchers
are also looking for options to increase root bio-
mass density in annual crops [23]. Increasing bio-
mass inputs through breeding annual or perennial
crops for deeper and denser root systems could
substantially enhance SOC sequestration without
affecting GHG emissions. More research on innova-
tive and transformative technologies that can cap-
ture and sequester a substantial amount of carbon
while improving soil health and water storage cap-
acity lays the foundation for the next generation
of climate-smart farming technologies in water-
limited environments.

Economic and policy implications

There is a robust scientific basis for managing agri-
cultural soils to increase SOC sequestration and
implement natural climate solutions. Incentivizing
the adoption of well-developed, conventional SOC
sequestering practices while investing in research
and development of new frontier technologies
could occur in the next two to three decades [23].
Benefits from such practices may accrue directly to
the landowner as improved yields and profitability

and indirectly to society through improved water
and air quality. For example, greater SOC can
improve water holding capacity and enhance soil
moisture availability, adding to the yield and quality
of crops [86, 87]. Increasing SOC and offsetting C
emissions also help mitigate climate change. Such
benefits can be measured by considering the dam-
ages mitigated or avoided by reduced changes in
climate. The damage mitigation value have been
estimated to range from $70 s to > $200 per metric
tonne of C equivalent [88]. The range could be
higher for water-limited environments because dry
conditions trigger more air pollution and associated
human health hazards. Nevertheless, because of the
growing recognition of the value of SOC sequestra-
tion and offsetting CO2 emissions, C markets are
emerging, and assistance to landowners to adopt
practices that increase SOC sequestration has
received greater attention. This additional benefit
may be sufficient for some landowners to include
“carbon” in their overall product portfolio. However,
committing to management changes for C seques-
tration might also limit a farmer’s ability to manage
other factors.

Motivating farmers and landowners to adopt
sustainable SOC sequestration practices on a large
scale will likely transform agricultural production
and its value chain and provide a practical and
natural solution to climate change. However, SOC
sequestration from agricultural land-use changes
and alternative management practices should
emphasize determining how much of the esti-
mated “technical” potential is economically feas-
ible, how cost-effective are the different
alternatives for possible incentive payments, and
what is the net value of incentives required in
water-limited environments. The social, economic
and cultural challenges of changing management
practices for C sequestration could be addressed
through a diverse set of incentives and measures.
They must consider region-specific barriers that
may hinder the implementation of SOC sequestra-
tion practices, such as security of tenure, lack of
financial resources, or the aging profile of farm
families. Developing and implementing policies to
promote more carbon per drop could provide a
win–win solution for farmers and society in water-
limited environments.

Conclusion

Climate change continues to be a significant threat
to agricultural sustainability. This paper discussed
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a more carbon per drop approach to improve agri-
cultural sustainability and resilience in arid and
semi-arid agroecosystems, which emphasizes
improved water management for increasing SOC
sequestration. Promoting management practices
that improve soil water storage and increase SOC
sequestration, and developing frontier water con-
servation technologies, can put farmers and land-
owners in arid and semi-arid regions at the
forefront of climate change solutions. Current agri-
cultural policies lack attention necessary to sup-
port arid and semi-arid agriculture innovations
that maximize environmental services, including
soil water conservation and SOC sequestration.
Therefore, developing policies to promote SOC
sequestration and incentive programs for develop-
ing frontier agricultural practices could lead to
broader adoption of these technologies and pro-
vide a win–win solution for agriculture and the
environment.
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